数字信号处理(DSP)
是20世纪60年代,随信息学科和计算机学科的快速地发展而快速地发展起来的一门新兴学科。它的重要性日益在所有的领域的应用中表现出来。
其主要标志是两项重大进展,即快速傅里叶变换(FFT)算法的提出和数字滤波器设计方法的完善。
数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方式进行各种处理,达到提取有用信息便于应用的目的。
信号(signal)是一种物理体现,或是传递信息的函数。而信息是信号的具体内容。
数字信号(digital signal):时间和幅度上都是离散(量化)的信号。
数字信号可用一序列的数表示,而每个数又可表示为二制码的形式,适合计算机处理。
系统:处理信号的物理设备。或者说,凡是能将信号加以变换以达到人们要求的各种设备。模拟系统与数字系统。
多数科学和工程中遇到的是模拟信号。以前都是研究模拟信号处理的理论和实现。
模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。
数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理
随着大规模集成电路以及数字计算机的快速的提升,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。
随着信息时代、数字世界的到来,数字信号处理已成为一门非常非常重要的学科和技术领域。
数/模转换:数字信号转换为模拟信号,零阶保持(zero order hold),
频谱:对信号中所含频率分量的描述,有该频率处的频谱幅度表示。通常用FFT(快速傅立叶变换)计算。
常用的滤波器改变信号的频率特性,让一些信号频率通过,阻塞另一些信号频率。通过消除一个或一些频率分量来改变信号的频谱。
对于图像(二维信号),低频部分时指图像中变化缓慢的部分,高频部分对于边缘或突变部分。
数字滤波器是由一系列滤波器系数定义的,只需要简单改变滤波器系数就能够实现滤波器特性的修改。
在国际上一般把1965年由Cooley-Turkey提出快速付里叶变换(FFT)的问世,作为数字信号处理这一学科的开端。
数字信号处理的基本工具:微积分,概率统计,随机过程,高等代数,数值分析,近代代数,复杂函数。
数字信号处理的理论基础:离散线性变换(LSI)系统理论,离散付里叶变换(DFT)。
在学科发展上,数字信号处理又和最优控制,通信理论,故障诊断等紧紧相连,成为AI,模式识别,神经网络,数字通信等新兴学科的理论基础。
信号处理的快速算法 :谱分析与快速付里叶变换(FFT),快速卷积与相关算法。
1.采用大、中小型计算机和微机:工作站和微机上各厂家的数字信号软件,如有各种图象压缩和解压软件。
2.用单片机:可根据不同环境配不同单片机,其能达实时控制,但数据运算量不能太大。
3.利用通用DSP芯片: DSP芯片较之单片机有着更为突出优点。如内部带有乘法器,累加器,采用流水线工作方式及并行结构,多总线速度快。配有适于信号处理的指令(如FFT指令)等。 美国德州仪器公司Texas Instrument(IT), Analog Devices ,Lucent , Motorola ,ATT等公司都有生产。
4.利用特殊用途的DSP芯片:市场上推出专门用于FFT,FIR滤波器,卷积、相关等专用数字芯片。其软件算法已在芯片内部用硬件电路实现,使用者只需给出输入数据,可在输出端直接得到数据。
用通用的可编程的数字信号处理器实现法—是目前重要的数字信号处理实现方法,它即有硬件实现法实时的优点,又具有软件实现的灵活性优点。
信号分析涉及信号特性的测量。它通常是一个频域的运算。主要使用在于:谱(频率和/或相位)分析、语音分析和识别、目标检测等。
例如(1)对环境噪声的谱分析,可确定主要频率成分,了解噪声的成因,找出降低噪声的对策;(2)对振动信号的谱分析,可了解振动物体的特性,为设计或故障诊断提供资料和数据。(3)对于高保真音乐和电视这样的宽带信号转到频率域后极大多数能量集中在直流和低频部分,就可把频谱中的大部分成分滤去,从而压缩信号频带。
数字滤波就是在形形的信号中提取所需要的信号,抑制不需要的信号或干扰信号。
应用于(1)消除信息在传输过程中由于信道不理想所引起的失线)滤除不需要的背景噪声,(3)去除干扰、(4)频带分割, 信号谱的成形。
它广泛地应用于数字通信,雷达,遥感,声纳,语音合成,图象处理,测量与控制,高清晰度电视,多媒体物理学,生物医学,机器人等。
语音处理:语音编码、语音合成、语音识别、语音增强、语音邮件、语音储存等。
图像/图形:二维和三维图形处理、图像压缩与传输、图像识别、动画、机器人视觉、多媒体、电子地图、图像增强等。