RC振荡电路工作原理及特点、分类

时间: 2024-07-13 22:57:26 |   作者: 屏蔽类电源滤波器

产品详情

  RC振荡电路,顾名思义就是由电阻R和电容C组合成选频网络的一种振荡电路,适用于低频振荡。这种振荡电路一般产生低频率信号,频率只有1Hz~1MHz。常见的RC振荡电路有两种,一种是RC相移振荡电路,另一种是RC桥式振荡电路,这两种电路都是由正反馈网络、选频网络和放大器组成的。

  RC振荡电路,顾名思义就是由电阻R和电容C组合成选频网络的一种振荡电路,适用于低频振荡。这种振荡电路一般产生低频率信号,频率只有1Hz~1MHz。常见的RC振荡电路有两种,一种是RC相移振荡电路,另一种是RC桥式振荡电路,这两种电路都是由正反馈网络、选频网络和放大器组成的。

  输出电压 uo经正反馈(兼选频)网络分压后,取uf作为同相比例电路的输入信号ui。

  φA= 0,仅在 f0处 φF= 0 满足相位平衡条件,所以振荡频率f0= 1/2πRC。

  考虑到起振条件AuF 1, 一般应选取 RF略大2R1。如果这个比值取得过大,会引起振荡波形严重失真。

  由运放构成的RC串并联正弦波振荡电路不是靠运放内部的晶体管进入非线性区稳幅,而是通过在外部引入负反馈来达到稳幅的目的。

  对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。因此,200kHz以下的正弦振荡电路,一般都会采用振荡频率较低的RC振荡电路。

  具有电路简单,经济方便等优点,但选频作用较差,振幅不够稳定,频率调节不便,因此通常用于频率固定、稳定性要求不高的场合。其振荡频率为:

  将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。

  如图所示,RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,Rf、R1接在运算放大器的输出端和反相输入端之间,构成负反馈。正反馈电路和负反馈电路构成一文氏电桥电路(如图所示),运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以,把这种振荡电路称为RC桥式振荡电路。

  (如图)振荡信号由同相端输入,故构成同相放大器,输出电压Uo与输入电压Ui同相,其闭环电压放大倍数等于Au=Uo/Ui=1+(Rf/R1)。而RC串并联选频网络在ω=ωo=1/RC时,Fu=1/3,εf=0°,所以,只要Au=1+(Rf/R1)3,即Rf2R1,振荡电路就能满足自激振荡的振幅和相位起振条件,产生自激振荡,振荡频率fo=1/2πRC

  采用双联可调电位器或双联可调电容器即可方便地调节振荡频率。在常用的RC振荡电路中,一般都会采用切换高稳定度的电容来进行频段的转换(频率粗调),再采用双联可变电位器进行频率的细调。

  晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络。电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振;较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

  晶振有一个重要的参数——负载电容值,选择与负载电容值相等的并联电容,就能够获得晶振标称的谐振频率。一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容。请注意一般IC的引脚都有等效输入电容,这个不能忽略。一般的晶振的负载电容为15pF或12.5pF,如果再考虑元件引脚的等效输入电容,则两个22pF的电容构成晶振的振荡电路就是比较好的选择。

  如上图:晶振是给单片机提供工作信号脉冲的 这个脉冲就是单片机的工作速度 比如 12M晶振 单片机工作速度就是每秒12M 当然 单片机的工作频率是有范围的不能太大 一般24M就不上去了 不然不稳定。

  晶振与单片机的脚XTAL0和脚XTAL1构成的振荡电路中会产生偕波(也就是不希望存在的其他频率的波) 这个波对电路的影响不大 但会降低电路的时钟振荡器的稳定性 为了电路的稳定性起见 ATMEL公司只是建议在晶振的两引脚处接入两个10pf-50pf的瓷片电容接地来削减偕波对电路的稳定性的影响 所以晶振所配的电容在10pf-50pf之间都可以的 没什么计算公式。

  每个单片机系统里都有晶振,全程是叫晶体震荡器,在单片机系统里晶振的作用很大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的工作速度也就越快。

  晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一些范围内调整频率,称为压控振荡器(VCO)。

  晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不相同的晶振,而通过电子调整频率的方法保持同步。

  晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

  晶振一般都会采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。

  分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。能够准确的看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却慢慢的变大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。

  最简单三级管振荡电路图大全(六款最简单三级管振荡电路设计原理图详解) - 信号处理

  ne555闪烁灯电路图大全(频闪灯/振荡电路/闪光电路) - 555集成电路大全

其他产品
热门产品